Don’t blame the U.S. Constitution for the Electoral College flaws. Blame the State Constitutions.

The rumblings over eliminating the Electoral College have continued unabated for years, with a spike in intensity after the 2016 election. Opponents of Electors point to the popular vote declaring Hillary Clinton the winner, yet the Electoral count gave the win to Trump. Clinton supporters called foul. Their argument: the people vote for the President. A simple majority should determine who wins.

Let’s step back in time to December 1788. The new U.S. Constitution was ratified in September of that year. …


I was born in 1960 just outside New York City to college degree’d parents. My father always voted Democrat, my mother Republican. Economic and social policy discussions around our dinner table were never driven by party ideology. My parents were too sensible for that.

My life path has led me to live in the Rockies, Northwest, Southwest, South, Atlantic Coast and now the Midwest. My wife and I discovered small town America 30+ years ago, and we’ve lived in small towns ever since.

At one time I thought I leaned conservative. 25 years ago I found out that, by the…


Note: The modifications to this article were to correct typos and grammatical errors

In Part I of this post (https://medium.com/@ryandmonson/applying-data-science-in-manufacturing-part-i-background-and-introduction-ccb15743e001) I discussed how Manufacturing processes are data rich environments and the possibility of improving processes through the application of machine learning techniques. Of specific interest was the possibility of a new process control paradigm: instead of controlling process parameters per a value range, control through parameter relationships.

In Part II (https://medium.com/swlh/applying-data-science-in-manufacturing-part-ii-batch-process-methodology-and-lessons-learned-d18d360d8953) model building to establish parameter relationships was performed on a batch process dataset. A classification model was built which demonstrated excellent predictive accuracy.

For Part III (https://medium.com/analytics-vidhya/applying-data-science-in-manufacturing-part-iii-continuous-process-methodology-and-lessons-463021c33b05) a continuous…


In Part II of this post (https://medium.com/@ryandmonson/applying-data-science-in-manufacturing-part-ii-batch-process-methodology-and-lessons-learned-d18d360d8953) several models for predicting alloy grade from a batch manufacturing process were created. Classification modeling was far more accurate than Regression modeling in predicting the training target variable. At the end of the article a post mortem was documented, outlining lessons learned and thoughts on making the modeling results useful to the batch process manufacturing operation.

In Part III a continuous manufacturing process will be analyzed. This process differs from the batch process as follows:

  • Processing is sequential, with time lags between process steps
  • Multiple measurements are taken of the product after processing…

It is characteristic of human nature to be inclined to regard anything which is disagreeable as untrue, and then without much difficulty to find arguments against it- Sigmund Freud

We are all of us all the time,
coming together and falling apart.
The point is, we are not rocks.
Who wants to be one anyway?
Impermeable, unchanging, our history already played out. — John Rosenthal

“Ok, Boomer. Let’s hear it. Let’s hear your perspective.”

My father pulled out the “on” button, turned the knob to channel 2, 3 or 4 on our black and white Zenith TV so the entire…


In Part I of this post (https://medium.com/@ryandmonson/applying-data-science-in-manufacturing-part-i-background-and-introduction-ccb15743e001) I hypothesized that Machine Learning modeling and subsequent control of process parameters could help reduce variation in Manufacturing.

In this post I’ll go through steps to create a predictive model for alloy grade using inputs from a metal alloy manufacturing dataset on the Kaggle website. Training and testing datasets for the metal alloy manufacturing are found on Kaggle at https://www.kaggle.com/esotericazzo/metal-furnace-dataset. All coding is in Python.

READ AND SUMMARIZE DATASETS

Code for importing Numpy, Pandas and OS:

import numpy as np 
import pandas as pd

#Input data files are available in the read-only "../input/" directory

import…


Data is like garbage: you better be sure what you’re going to do with it before you collect it- Mark Twain

This is a four part post:

-Part I — Background and Introduction
-Part II — Batch Processing: Methodology and Lessons Learned
-Part III — Continuous Processing: Methodology and Lessons Learned
-Part IV — Summary and Conclusions

After 30+ years with various Manufacturing organizations as a New Product Development, Process and Quality Engineer plus a stint as an Organizational Development Consultant I temporarily left industry to pursue education in Data Science.

My course of study included 20 guided projects, assignments…


“Breakthrough is the creation of good change, control the prevention of bad change…all managerial activity is directed at either breakthrough or control- J.M. Juran

In a competitive economy, above all, the quality and performance of the managers determine the success of a business; indeed, they determine its survival — Peter Drucker

The calls for change within business organizations over the extent of my career (30+ yrs) are too numerous to cite. Generally warnings about ceasing to exist are part of those calls. …


“Far too many corporations think they have a smart system and stupid workers. They’ve got it backwards.- Bruce E. Babbit”

It is more convenient to assume that reality is similar to our preconceived ideas than to freshly observe what we have before our eyes- Robert Fritz.

I was having a dialog with a friend recently. I highly prize speaking with this individual. Unlike the usual discussion ( same root as percussion or concussion, a heaving back and forth in a winner-take-all competition), we come away from our time together having tweaked our positions on the topic. …


“The right to be consulted is earned and re-earned, by demonstrating the capacity to be helpful.” — G.B. Ranney, Youden Address, “Context of Statistical Practice”, ASQ Statistics Division Newsletter, Vol. 17, №1

“One quality characteristic of statistical services might be whether the plan for a study, or the discussion of findings, or the description of how to use a method is designed to be understood by the user.” — ibid.

(Note: This article is a follow on to my recently published article “”Do Data Science Practitioners get too ‘Scientific’? “)

Many years ago I wrote a mini paper for the…

Ryan Monson

Engineer who writes on Data Science and social issues

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store